21 resultados para emerging infectious disease

em Indian Institute of Science - Bangalore - Índia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Significant advances have been made in our understanding of heat shock protein 90 (Hsp90) in terms of its structure, biochemical characteristics, post-translational modifications, interactomes, regulation and functions. In addition to yeast as a model several new systems have now been examined including flies, worms, plants as well as mammalian cells. This review discusses themes emerging out of studies reported on Hsp90 from infectious disease causing protozoa. A common theme of sensing and responding to host cell microenvironment emerges out of analysis of Hsp90 in Malaria, Trypanosmiasis as well as Leishmaniasis. In addition to their functional roles, the potential of Hsp90 from these infectious disease causing organisms to serve as drug targets and the current status of this drug development endeavor are discussed. Finally, a unique and the only known example of a split Hsp90 gene from another disease causing protozoan Giardia lamblia and its evolutionary significance are discussed. Clearly studies on Hsp90 from protozoan parasites promise to reveal important new paradigms in Hsp90 biology while exploring its potential as an anti-infective drug target. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90). (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ecoepidemiology is a well-developed branch of theoretical ecology, which explores interplay between the trophic interactions and the disease spread. In most ecoepidemiological models, however, the authors assume the predator to be a specialist, which consumes only a single prey species. In few existing papers, in which the predator was suggested to be a generalist, the alternative food supply was always considered to be constant. This is obviously a simplification of reality, since predators can often choose between a number of different prey. Consumption of these alternative prey can dramatically change their densities and strongly influence the model predictions. In this paper, we try to bridge the gap and explore a generic ecoepidemiological system with a generalist predator, where the densities of all prey are dynamical variables. The model consists of two prey species, one of which is subject to an infectious disease, and a predator, which consumes both prey species. We investigate two main scenarios of infection transmission mode: (i) the disease transmission rate is predator independent and (ii) the transmission rate is a function of predator density. For both scenarios we fulfil an extensive bifurcation analysis. We show that including a second dynamical prey in the system can drastically change the dynamics of the single prey case. In particular, the presence of a second prey impedes disease spread by decreasing the basic reproduction number and can result in a substantial drop of the disease prevalence. We demonstrate that with efficient consumption of the second prey species by the predator, the predator-dependent disease transmission can not destabilize interactions, as in the case with a specialist predator. Interestingly, even if the population of the second prey eventually vanishes and only one prey species finally remains, the system with two prey species may exhibit different properties to those of the single prey system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With biotin labelled and unlabelled immunoglobulin fraction of anticysticercal antibodies raised in rabbits, tandem-enzyme linked immunosorbent assay (T-ELISA), capture-dot immunobinding assay (C-DIA) and reverse passive haemagglutination (RPHA) tests were developed for the detection of cysticercal antigens. The sensitivity levels were respectively, 9 ng ml−1, 2 ng ml−1 and 45 ng ml−1. All three methods were of equal specificity as none of the antigens of Mycobacterium tuberculosis, Japanese encephalitis virus and Echinococcus granulosus reacted with anticysticercal IgG. Cysticercal antigens were detected in the cerebrospinal fluid (CSF) of confirmed neurocysticercosis at sensitivity levels of 91·6% by T-ELISA, 83·33% by C-DIA and 75% by RPHA and specificity levels of >93%. Western analysis of these antigens in CSF showed mainly antigens of 64–68 kDa and 24–28 kDA. By crossed immunoelectrophoresis (CIE) with an intermediate gel technique, five circulating antigens were found to be released from scolex and fluid.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Combating stress is one of the prime requirements for any organism. For parasitic microbes, stress levels are highest during the growth inside the host. Their survival depends on their ability to acclimatize and adapt to new environmental conditions. Robust cellular machinery for stress response is, therefore, both critical and essential especially for pathogenic microorganisms. Microbes have cleverly exploited stress proteins as virulence factors for pathogenesis in their hosts. Owing to its ability to sense and respond to the stress conditions, Heat shock protein 90 (Hsp90) is one of the key stress proteins utilized by parasitic microbes. There are growing evidences for the critical role played by Hsp90 in the growth of pathogenic organisms like Candida, Giardia, Plasmodium, Trypanosoma, and others. This review, therefore, explores potential of exploiting Hsp90 as a target for the treatment of infectious diseases. This molecular chaperone has already gained attention as an effective anti-cancer drug target. As a result, a lot of research has been done at laboratory, preclinical and clinical levels for several Hsp90 inhibitors as potential anti-cancer drugs. In addition, lot of data pertaining to toxicity studies, pharmacokinetics and pharmacodynamics studies, dosage regime, drug related toxicities, dose limiting toxicities as well as adverse drug reactions are available for Hsp90 inhibitors. Therefore, repurposing/repositioning strategies are also being explored for these compounds which have gone through advanced stage clinical trials. This review presents a comprehensive summary of current status of development of Hsp90 as a drug target and its inhibitors as candidate anti-infectives. A particular emphasis is laid on the possibility of repositioning strategies coupled with pharmaceutical solutions required for fulfilling needs for ever growing pharmaceutical infectious disease market.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bactericidal permeability increasing protein (BPI), a 55-60kDa protein, first reported in 1975, has gone a long way as a protein with multifunctional roles. Its classical role in neutralizing endotoxin (LPS) raised high hopes among septic shock patients. Today, BPI is not just a LPS-neutralizing protein, but a protein with diverse functions. These functions can be as varied as inhibition of endothelial cell growth and inhibition of dendritic cell maturation, or as an anti-angiogenic, chemoattractant or opsonization agent. Though the literature available is extremely limited, it is fascinating to look into how BPI is gaining major importance as a signalling molecule. In this review, we briefly summarize the recent research focused on the multiple roles of BPI and its use as a therapeutic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Malaria is an infectious disease that mainly affects children and pregnant women from tropical countries. The mortality rate of people infected with malaria per year is enormous and became a public health concern. The main factor that has contributed to the success of malaria proliferation is the increased number of drug resistant parasites. To counteract this trend, research has been done in nanotechnology and nanomedicine, for the development of new biocompatible systems capable of incorporating drugs, lowering the resistance progress, contributing for diagnosis, control and treatment of malaria by target delivery. In this review, we discussed the main problems associated with the spread of malaria and the most recent developments in nanomedicine for anti-malarial drug delivery. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Deviated nasal septum (DNS) is one of the major causes of nasal obstruction. Polyvinylidene fluoride (PVDF) nasal sensor is the new technique developed to assess the nasal obstruction caused by DNS. This study evaluates the PVDF nasal sensor measurements in comparison with PEAK nasal inspiratory flow (PNIF) measurements and visual analog scale (VAS) of nasal obstruction. Methods: Because of piezoelectric property, two PVDF nasal sensors provide output voltage signals corresponding to the right and left nostril when they are subjected to nasal airflow. The peak-to-peak amplitude of the voltage signal corresponding to nasal airflow was analyzed to assess the nasal obstruction. PVDF nasal sensor and PNIF were performed on 30 healthy subjects and 30 DNS patients. Receiver operating characteristic was used to analyze the DNS of these two methods. Results: Measurements of PVDF nasal sensor strongly correlated with findings of PNIF (r = 0.67; p < 0.01) in DNS patients. A significant difference (p < 0.001) was observed between PVDF nasal sensor measurements and PNIF measurements of the DNS and the control group. A cutoff between normal and pathological of 0.51 Vp-p for PVDF nasal sensor and 120 L/min for PNIF was calculated. No significant difference in terms of sensitivity of PVDF nasal sensor and PNIF (89.7% versus 82.6%) and specificity (80.5% versus 78.8%) was calculated. Conclusion: The result shows that PVDF measurements closely agree with PNIF findings. Developed PVDF nasal sensor is an objective method that is simple, inexpensive, fast, and portable for determining DNS in clinical practice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lymphatic filariasis is the second leading cause of permanent long-term disability globally and control of this disease needs efficient diagnostic methods. In this study, abundantly expressing microfilarial sheath protein (Shp-1) from Brugia malayi was characterized as a filarial diagnostic candidate using samples from different clinical population. Monoclonal antibodies were developed against E. coil expressed recombinant Shp-1 in order to assess its efficiency in filarial antigen detection assay system. Endemic Normal (EN, n = 170), asymptomatic microfilaeremics (MF, n = 65), symptomatic chronic pathology (CP, n = 45) and non endemic normal (NEN, n = 10) sera were analyzed by antigen capture enzyme-linked immunosorbent assay. Of the 290 individuals, all MF individuals (both brugian and bancroftian) were positive in this assay followed by CP and EN. When compared with SXP-1 and Og4C3 antigen assays, all assays detected Wb MF correctly, Bm MF was detected by Shp-1 and SXP-1 assays, and only Shp-1 was able to detect EN (12%) and CP (29%). Results showed that this assay may be useful for monitoring prior to mass drug administration. (c) 2014 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In China, the recent outbreak of novel influenza A/H7N9 virus has been assumed to be severe, and it may possibly turn brutal in the near future. In order to develop highly protective vaccines and drugs for the A/H7N9 virus, it is critical to find out the selection pressure of each amino acid site. In the present study, six different statistical methods consisting of four independent codon-based maximum likelihood (CML) methods, one hierarchical Bayesian (HB) method and one branch-site (BS) method, were employed to determine if each amino acid site of A/H7N9 virus is under natural selection pressure. Functions for both positively and negatively selected sites were inferred by annotating these sites with experimentally verified amino acid sites. Comprehensively, the single amino acid site 627 of PB2 protein was inferred as positively selected and it function was identified as a T-cell epitope (TCE). Among the 26 negatively selected amino acid sites of PB2, PB1, PA, HA, NP, NA, M1 and NS2 proteins, only 16 amino acid sites were identified to be involved in TCEs. In addition, 7 amino acid sites including, 608 and 609 of PA, 480 of NP, and 24, 25, 109 and 205 of M1, were identified to be involved in both B-cell epitopes (BCEs) and TCEs. Conversely, the function of positions 62 of PA, and, 43 and 113 of HA was unknown. In conclusion, the seven amino acid sites engaged in both BCEs and TCEs were identified as highly suitable targets, as these sites will be predicted to play a principal role in inducing strong humoral and cellular immune responses against A/H7N9 virus. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

T-protein, an aminomethyltransferase, represents one of the four components of glycine cleavage system (GCS) and catalyzes the transfer of methylene group from H-protein intermediate to tetrahydrofolate (THF) forming N-5, N-10-methylene THF (CH2-THF) with the release of ammonia. The malaria parasite genome encodes T-, H- and L-proteins, but not P-protein which is a glycine decarboxylase generating the aminomethylene group. A putative GCS has been considered to be functional in the parasite mitochondrion despite the absence of a detectable P-protein homologue. In the present study, the mitochondrial localization of T-protein in the malaria parasite was confirmed by immunofluorescence and its essentiality in the entire parasite life cycle was studied by targeting the T-protein locus in Plasmodium berghei (Pb). PbT knock out parasites did not show any growth defect in asexual, sexual and liver stages indicating that the T-protein is dispensable for parasite survival in vertebrate and invertebrate hosts. The absence of P-protein homologue and the non-essentiality of T protein suggest the possible redundancy of GCS activity in the malaria parasite. Nevertheless, the H- and L-proteins of GCS could be essential for malaria parasite because of their involvement in alpha-lcetoacid dehydrogenase reactions. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pluripotent stem cells are being actively studied as a cell source for regenerating damaged liver. For long-term survival of engrafting cells in the body, not only do the cells have to execute liver-specific function but also withstand the physical strains and invading pathogens. The cellular innate immune system orchestrated by the interferon (IFN) pathway provides the first line of defense against pathogens. The objective of this study is to assess the innate immune function as well as to systematically profile the IFN-induced genes during hepatic differentiation of pluripotent stem cells. To address this objective, we derived endodermal cells (day 5 post-differentiation), hepatoblast (day 15) and hepatocyte-like cells (day 21) from human embryonic stem cells (hESCs). Day 5, 15 and 21 cells were stimulated with IFN-alpha and subjected to IFN pathway analysis. Transcriptome analysis was carried out by RNA sequencing. The results showed that the IFN-alpha treatment activated STAT-JAK pathway in differentiating cells. Transcriptome analysis indicated stage specific expression of classical and non-classical IFN-stimulated genes (ISGs). Subsequent validation confirmed the expression of novel ISGs including RASGRP3, CLMP and TRANK1 by differentiated hepatic cells upon IFN treatment. Hepatitis C virus replication in hESC-derived hepatic cells induced the expression of ISGs - LAMP3, ETV7, RASGRP3, and TRANK1. The hESC-derived hepatic cells contain intact innate system and can recognize invading pathogens. Besides assessing the tissue-specific functions for cell therapy applications, it may also be important to test the innate immune function of engrafting cells to ensure adequate defense against infections and improve graft survival. (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The proteins of Plasmodium, the malaria parasite, are strikingly rich in asparagine. Plasmodium depends primarily on host haemoglobin degradation for amino acids and has a rudimentary pathway for amino acid biosynthesis, but retains a gene encoding asparagine synthetase (AS). Here we show that deletion of AS in Plasmodium berghei (Pb) delays the asexual-and liver-stage development with substantial reduction in the formation of ookinetes, oocysts and sporozoites in mosquitoes. In the absence of asparagine synthesis, extracellular asparagine supports suboptimal survival of PbAS knockout (KO) parasites. Depletion of blood asparagine levels by treating PbASKO-infected mice with asparaginase completely prevents the development of liver stages, exflagellation of male gametocytes and the subsequent formation of sexual stages. In vivo supplementation of asparagine in mice restores the exflagellation of PbASKO parasites. Thus, the parasite life cycle has an absolute requirement for asparagine, which we propose could be targeted to prevent malaria transmission and liver infections.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives:To determine if there is a biological mechanism that explains the association between HIV disease progression and increased mortality with low circulating vitamin D levels; specifically, to determine if restoring vitamin D levels induced T-cell functional changes important for antiviral immunity.Design:This was a pilot, open-label, three-arm prospective phase 1 study.Methods:We recruited 28 patients with low plasma vitamin D (<50nmol/l 25-hydroxyvitamin D3), comprising 17 HIV+ patients (11 on HAART, six treatment-naive) and 11 healthy controls, who received a single dose of 200000IU oral cholecalciferol. Advanced T-cell flow cytometry methods measured CD4(+) T-cell function associated with viral control in blood samples at baseline and 1-month after vitamin D supplementation.Results:One month of vitamin D supplementation restored plasma levels to sufficiency (>75nmol/l) in 27 of 28 patients, with no safety issues. The most striking change was in HIV+ HAART+ patients, where increased frequencies of antigen-specific T cells expressing macrophage inflammatory protein (MIP)-1 - an important anti-HIV blocking chemokine - were observed, with a concomitant increase in plasma MIP-1, both of which correlated significantly with vitamin D levels. In addition, plasma cathelicidin - a vitamin D response gene with broad antimicrobial activity - was enhanced.Conclusion:Vitamin D supplementation modulates disease-relevant T-cell functions in HIV-infected patients, and may represent a useful adjunct to HAART therapy. Copyright (C) 2015 Wolters Kluwer Health, Inc. All rights reserved.